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The response of choked nozzles and supersonic diffusers to one-dimensional flow
perturbations is investigated. Following previous arguments in the literature, small
flow perturbations in a duct of spatially linear steady velocity distribution are
determined by solution of a hyper-geometric differential equation. A set of boundary
conditions is then developed that extends the existing work to a nozzle of arbitrary
geometry. This analysis accommodates the motion of a plane shock wave and makes
no assumption about the nozzle compactness. Numerical simulations of the unsteady,
quasi-one-dimensional Euler equations are performed to validate this analysis and
also to indicate the conditions under which the perturbations remain approximately
linear.

The nonlinear response of compact choked nozzles and supersonic diffusers is also
investigated. Simple analyses are performed to determine the reflected and transmitted
waveforms, as well as conditions for unchoke, ‘over-choke’ and unstart. This analysis
is also supported with results from numerical simulations of the Euler equations.

1. Introduction
Choked nozzles and supersonic diffusers appear in many engineering devices, such

as aircraft, gas turbines, ramjets and wind tunnels. In such cases, it is common
for pressure and entropy fluctuations to interact with the geometry and shocks,
occasionally with undesirable consequences. For example, atmospheric disturbances
enter the supersonic diffuser of a ramjet in flight, and can result in the expulsion
of a normal shock from the inlet. This process, known as ‘unstart’, causes a sudden
reduction in thrust (see Mayer & Paynter 1995). In the premixed combustor of a gas
turbine, the acoustic and entropic disturbances produced by flame motion interact
with a choked outlet nozzle, resulting in a reflected pressure wave. This pressure
wave travels upstream and interacts with the flame, causing further flame motion.
Depending on the exact response of the choked outlet nozzle to the perturbations, the
feedback provided by the nozzle may result in ‘thermoacoustic instability’, which can
lead to blow-out of the flame, or sound pressure levels large enough to damage the
gas turbine (see Dowling & Hubbard 2000). It is therefore important to understand
the response of a choked nozzle or supersonic diffuser to excitation by incident
disturbances.

Tsien (1952) provided the first detailed analysis of the forced response of a quasi-
one-dimensional choked nozzle. He analytically determined the fractional mass flow
perturbation at the nozzle entrance as a response to perturbations in the fractional
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pressure. For a choked nozzle with a spatially linear steady velocity profile, he was able
to reduce the linearized mass, momentum, and energy equations to a hyper-geometric
differential equation. Because he was only interested in the fluid behaviour at the
entrance to the nozzle, the effect of a shock downstream of the throat was ignored
since small perturbations in the supersonic region downstream of the throat cannot
travel upstream. Because of computational limitations, Tsien (1952) only studied the
high- and low-frequency limits of the response.

Marble & Candel (1977) extended the analysis of Tsien (1952) to study the
transmission and reflection coefficients of compact and finite-length choked nozzles.
Their work focused on the influence of entropy disturbances (sometimes called
convected ‘hot spots’) but could also be used to find the response to acoustic excitation.
They showed that a choked outlet nozzle not only reflected downstream travelling
pressure waves but also acted as a source of sound for incident entropy disturbance.
They were able to overcome the computational limitations faced by Tsien (1952) and
studied the frequency dependence of the nozzle, but they still assumed that the nozzle
geometry was such that the steady velocity distribution was linear, and that no shock
existed in the nozzle. Their discussion of the effect of normal shocks was limited to a
brief study of a compact nozzle with a shock downstream where the only excitation
was an entropy disturbance.

Culick & Rogers (1983) provided an analytical technique for determining the
frequency-dependent acoustic impedance downstream of a shock wave in a ramjet
engine. Their analysis was based on solving the unsteady Rankine–Hugoniot equations
across the shock whilst simultaneously considering the shock motion. They did not
consider the influence of the area change throughout the nozzle, and were concerned
only with the influence of acoustic disturbances from downstream.

Stow, Dowling & Hynes (2002) provided an extension to the analysis of Culick &
Rogers (1983) by developing a relationship between the fractional pressure, velocity
and density perturbations and the shock displacement. This provided a means of
determining the unsteady entropy generation at the shock. Since they were not
concerned with the transmission of disturbances through the nozzle, they did not
consider the effect of perturbations entering the shock from upstream. Although their
result was true for arbitrary forcing frequency, they made the assumption that the
frequency was zero when applying it to the case of a choked inlet nozzle. This final
result was therefore only valid for compact nozzles. Stow et al. (2002) also studied
the reflection coefficient of choked outlet nozzles with arbitrary geometries, although
since their analysis was to first order in the excitation frequency, it was only valid in
the low frequency limit.

It therefore appears that a comprehensive study of the frequency response of
choked nozzles and supersonic diffusers containing shocks is yet to be performed.
Previous studies appear to assume one or more of compactness, low forcing frequency,
shock-free flow or ignore area changes. The work presented in § 2 therefore builds on
the models of Marble & Candel (1977) and Stow et al. (2002) to develop a model that
predicts the one-dimensional frequency response of choked nozzles and supersonic
diffusers containing shocks. Excitation by both incident pressure and entropy waves
are considered, as well as the acoustic and entropic response. The model is valid for
arbitrary excitation frequency and considers planar shock motion. The model is also
applicable to any nozzle geometry as long as the steady velocity distribution can
be approximated as piecewise linear. Analyses of the nonlinear response as well as
conditions for unchoking, unstarting and ‘over-choking’ of compact choked nozzles
and compact supersonic diffusers are also presented.
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Section 3 describes a numerical solution of the quasi-one-dimensional Euler
equations. In § 4, this solver is applied to a range of choked nozzle and supersonic
diffuser geometries under various forms of excitation. The results of these simulations
are compared to the analytical results presented in § 2, and agree favourably. The
numerical solver is also used to study nonlinear, non-compact phenomena to which
the analytical results do not apply.

2. Theory
2.1. Equations of motion

Consider the quasi-one-dimensional Euler equations applied to a calorifically perfect,
ideal gas,

∂

∂t
(ρA) +

∂

∂x
(ρuA) = 0, (2.1a)

∂

∂t
(ρuA) +

∂

∂x
([p + ρu2]A) = p

dA

dx
, (2.1b)

∂

∂t

([
p

γ − 1
+ 1

2
ρu2

]
A

)
+

∂

∂x

([
γp

γ − 1
+ 1

2
ρu2

]
uA

)
= 0, (2.1c)

where u is velocity, p is pressure, ρ is density, A is the cross-sectional area of the
duct, and γ is the ratio of specific heats (γ = 1.4 for all presented calculations). If
the cross-sectional area of the duct is constant, these equations of motion can be
linearized in the perturbation quantities to obtain

∂p+

∂t
+ (ū + c̄)

∂p+

∂x
= 0, (2.2a)

∂p−

∂t
+ (ū − c̄)

∂p−

∂x
= 0, (2.2b){

∂

∂t
+ ū

∂

∂x

} (
s ′

cp

)
= 0, (2.2c)

where

p+ =
p′

γp̄
+

u′

c̄
, p− =

p′

γp̄
− u′

c̄
,

s ′

cp

=
p′

γp̄
− ρ ′

ρ̄
, (2.3a–c)

c is the speed of sound, s ′ is the entropy perturbation, cp is the specific heat at
constant pressure, (̄ ) represents steady flow quantities and ( )′ represents perturbations
about the steady flow. Equations (2.2a)–(2.2c) show that the system is composed of
three perturbations: acoustic waves p+ and p− travelling downstream and upstream
respectively at the speed of sound with respect to the steady flow, and a convected
entropy perturbation s ′/cp . Thus any section within a quasi-one-dimensional flow
has a number of disturbances entering and exiting it. For linear harmonic solutions,
the reflection and transmission coefficients are the transfer functions of the entering
disturbances to the exiting disturbances.

2.2. Dynamic shock relations

This subsection develops relations that describe the response of a normal shock
wave to acoustic and entropic excitation. The development of these shock relations
follows the same arguments as those given by Stow et al. (2002); however, because the
transmission behaviour of the nozzle is also of interest, the effects of perturbations
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entering the shock from upstream are considered. To first order in the perturbation
quantities, the speed of sound at the shock is

c1,sh (xs) = c1 (xs) = c̄1 (x̄s) + c1
′ (x̄s) + xs

′
(

dc̄1

dx

)
xs=x̄s

, (2.4)

where c is the speed of sound, xs is the shock location, the subscript ( )sh denotes
quantities taken in the shock frame of reference, and the subscript ( )1 denotes
quantities measured on the upstream side of the shock. Since the steady stagnation
speed of sound is conserved throughout the domain,

dc̄

dx
= − (γ − 1)

2
M̄

dū

dx
, (2.5)

for adiabatic flow, where M is the Mach number. Substituting (2.5) into (2.4) yields

c1,sh

c̄1

= 1 +
c1

′

c̄1

− xs
′ (γ − 1)

2

M̄2
1

ū1

dū1

dx
. (2.6)

Similarly, assuming that the disturbances are harmonic with time dependence exp (iωt),

u1,sh = u1 − dxs

dt
= ū1 + u1

′ + xs
′
(

dū1

dx
− iω

)
. (2.7)

The linearization given in (2.4) is only valid for infinitesimal positive and negative
perturbations in the shock location if(

dc̄1

dx

)
xs=x̄s−ε

=

(
dc̄1

dx

)
xs=x̄s+ε

, (2.8)

where ε is an infinitesimally small distance. This can be ensured if dA/dx is continuous
at the steady shock location. In conjunction with the area–Mach number relation for
isentropic flow, this requirement can be expressed as

1

A

dA

dx
=

M̄2
1 − 1

M̄1

(
1 + 1

2
(γ − 1) M̄2

1

) dM̄1

dx
=

M̄2
2 − 1

M̄2

(
1 + 1

2
(γ − 1) M̄2

2

) dM̄2

dx
, (2.9)

where ( )2 denotes quantities measured on the downstream side of the shock.
Substitution of (2.5) into (2.9) yields

dū2

dx
=

ū2

ū1

M̄2
1 − 1

M̄2
2 − 1

dū1

dx
. (2.10)

Now define Ω = ω/(dū/dx) as the non-dimensional frequency. The value of |Ω | can
be thought of as a measure of the acoustic compactness of a contraction or expansion.
Substituting (2.10) into (2.7) gives

u1,sh

ū1

= 1 +
u1

′

ū1

+
xs

′

ū1

dū1

dx

(
1 − ū2

ū1

M̄2
1 − 1

M̄2
2 − 1

iΩ2

)
. (2.11)

Dividing (2.11) by (2.6) gives

M1,sh

M̄1

= 1 +
M1

′

M̄1

+
xs

′

ū1

dū1

dx

(
1 +

γ − 1

2
M̄2

1 − ū2

ū1

M̄2
1 − 1

M̄2
2 − 1

iΩ2

)
. (2.12)

The Rankine–Hugoniot shock relation for velocity states that

u1,sh

u2,sh

=
(γ + 1) M2

1,sh

2 + (γ − 1) M2
1,sh

. (2.13)
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Substituting (2.11) and (2.12) into (2.13) gives

u2,sh

ū2

= 1 − xs
′

ū1

dū1

dx

[
1 + iΩ2

ū2

ū1

2 − (γ − 1) M̄2
1

(γ + 1) M̄2
2

]

+
2

2 − (γ + 1) M̄2
1

[
γ

p1
′

γp̄1

− ρ1
′

ρ̄1

−
(

1 − γ − 1

2
M̄2

1

)
u1

′

ū1

]
. (2.14)

It is also true that

u2,sh = u2 − dxs

dt
= ū2 + u2

′ + xs
′
(

dū2

dx
− iω

)
, (2.15)

which after further manipulation yields

u2,sh

ū2

= 1 +
u2

′

ū2

− xs
′

ū1

dū1

dx

M̄2
1

M̄2
2

ū2

ū1

(1 − iΩ2) . (2.16)

Substituting (2.16) into (2.14) gives

u2
′

ū2

=
2xs

′

(γ + 1)ū1

dū1

dx
Eu +

2

2 + (γ − 1) M̄2
1

Fu, (2.17)

where

Eu = −γ(1 − M̄2
1) − ū2

ū1

1 + M̄2
1

M̄2
2

iΩ2, Fu = γ
p1

′

γp̄1

− ρ1
′

ρ̄1

−
(

1 − γ − 1

2
M̄2

1

)
u1

′

ū1

.

Starting with the Rankine–Hugoniot shock relations for pressure and density, similar
arguments can be applied to show that on the downstream side of the shock

p2
′

γp̄2

=
2xs

′

(γ + 1)ū1

dū1

dx
Ep +

2

2 + (γ − 1) M̄2
1

Fp, (2.18)

ρ2
′

ρ̄2

=
2xs

′

(γ + 1)ū1

dū1

dx
Eρ +

2

2 + (γ − 1) M̄2
1

Fρ, (2.19)

where

Ep =
(1 + γ2)M̄2

1 + γ − 1

2γM̄2
1 − γ + 1

(
1 − M̄2

1

)
+ 2

ū2

ū1

M̄2
1iΩ2,

Fp = M̄2
2

(
1 − γ

2

p1
′

γp̄1

+ M̄2
1

ρ1
′

ρ̄1

+ 2M̄2
1

u1
′

ū1

)
,

Eρ = γ
(
1 − M̄2

1

)
+

2ū2

ū1M̄
2
2

iΩ2, Fρ = −γ
p1

′

γp̄1

+

(
2 +

γ − 1

2
M̄2

1

)
ρ1

′

ρ̄1

+ 2
u1

′

ū1

.

At the shock there are four incoming waves (p+
1 , p−

1 , s1
′/cp and p−

2 ) and two outgoing
waves (p+

2 and s2
′/cp). Only two equations are therefore required to solve for these

outgoing waves, and to describe fully the linear reflection and transmission of the
shock. Two such equations can be found by cancelling xs

′ out of (2.17)–(2.19),

u2
′

ū2

=
p2

′

γp̄2

Eu

Ep

+
Fu − FpEu/Ep

1 + 1
2
(γ − 1) M̄2

1

, (2.20a)

s2
′

cp

=
p2

′

γp̄2

[
1 − Eρ

Ep

]
− Fρ − FpEρ/Ep

1 + 1
2
(γ − 1) M̄2

1

. (2.20b)
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2.3. Transmission and reflection coefficients for finite-length choked nozzles

It is common to consider a linear steady velocity distribution in the study of
transmission and reflection of nozzles (see Tsien 1952; Marble & Candel 1977)
because this facilitates analytical solution. Such a velocity profile is clearly insufficient
to describe a shock, so a piecewise linear steady velocity profile will be considered
instead. In order to find an analytic solution for the acoustics in a nozzle with a
piecewise linear steady velocity distribution, it is necessary first to find a general
analytic solution for the acoustics in a region of linear velocity distribution, and
then specify appropriate boundary conditions to describe the interaction of connected
regions. This approach is outlined in the next three sub-subsections.

2.3.1. Analytic solution of perturbations in a region of linear steady velocity profile

Marble & Candel (1977) reduce the description of the flow perturbations in a section
of duct with a linearly distributed steady velocity to a hyper-geometric differential
equation. They start by linearizing (2.1a)–(2.1c) in the perturbation quantities to
obtain (2.2c), {

∂

∂t
+ ū

∂

∂x

}(
p′

γp̄

)
+ ū

∂

∂x

(
u′

ū

)
= 0, (2.21)

{
∂

∂t
+ ū

∂

∂x

}(
u′

ū

)
+

c̄2

ū

∂

∂x

(
u′

ū

)
+

[
2
u′

ū
− (γ − 1)

p′

γp̄
− s ′

cp

]
dū

dx
= 0. (2.22)

Take the origin of the x-coordinate system to be the location at which the steady
velocity is zero. This origin will not be located within the region being studied,
but can be found by extrapolation of the steady velocity profile. Let the subscript
( )∗ denote quantities taken at the location at which the steady flow is choked
(again, this might not be located within the region being studied), i.e. ū∗ = c̄∗ at x∗.
Therefore ū(x) = xc̄∗/x∗. Let dimensionless time and position be defined as τ = t c̄∗/x∗
and ξ = (x/x∗)

2 respectively. Marble & Candel (1977) then transform (2.2c), (2.21)
and (2.22) into dimensionless terms to obtain{

∂

∂τ
+ 2ξ

∂

∂ξ

} (
p′

γp̄

)
+ 2ξ

∂

∂ξ

(
u′

ū

)
= 0, (2.23a)

{
∂

∂τ
+ 2ξ

∂

∂ξ

}(
u′

ū

)
+

[
γ + 1

ξ
− γ + 1

]
ξ

∂

∂ξ

(
p′

γp̄

)
+ 2

u′

ū
− (γ − 1)

p′

γp̄
=

s ′

cp

, (2.23b)

{
∂

∂τ
+ 2ξ

∂

∂ξ

}(
s ′

cp

)
= 0. (2.23c)

Finally Marble & Candel (1977) assume that the disturbances have time
dependence exp(iΩτ ), and let p′/(γp̄) = P (ξ ) exp(iΩτ ), u′/ū =U (ξ ) exp(iΩτ ) and
s ′/cp = σ (ξ ) exp(iΩτ ) to gain

σ = σr

(
ξ

ξr

)−iΩ/2

, (2.24a)

ξ (1 − ξ )
d2P

dξ 2
− 2

γ + 1 + iΩ

γ + 1
ξ
dP

dξ
− iΩ (2 + iΩ)

2 (γ + 1)
P =

−iΩσ

2 (γ + 1)
, (2.24b)

(2 + iΩ) U = − (γ + 1) (1 − ξ )
dP

dξ
+ (γ − 1 + iΩ) P + σ, (2.24c)
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Figure 1. Geometry of nozzle and steady velocity distribution.

where the subscript ( )r refers to the value of a property taken at a reference location.
Equation (2.24b) is hyper-geometric. Solutions based on polynomials of the variable
1 − ξ will be considered here since these series will converge for 0 < ξ < 2, which will
at least allow the study of all flows with M <

√
4/(3 − γ). Although not discussed

in this paper, when analysing higher Mach number flows, it should be a relatively
simple matter to model regions containing only supersonic flow with hyper-geometric
solutions in the variable ξ−1. However, the solution considered here is

P = σrPp + a0Ph1 + b0Ph2, (2.25)

where

Pp =
−iΩξr

iΩ/2

2 (γ + 1)

∞∑
n=0

cn(1 − ξ )n+1, Ph1 =

∞∑
n=0

a(n)b(n)

n!(1 + a + b)(n)
(1 − ξ )n,

Ph2 =

∞∑
n=0

(−a)(n)(−b)(n)

n!(1 − a − b)(n)
(1 − ξ )n−a−b,

c0 =
1

1 + a + b
, cn =

cn−1 (n + a) (n + b) n! +
(
1 − n − 1

2
iΩ

)(n)
(−1)n

(n + 1) (n + 1 + a + b) n!
,

a + b = 1 +
2iΩ

γ + 1
, ab =

iΩ (2 + iΩ)

2 (γ + 1)
,

and x(n) = x(x + 1)(x + 2) . . . (x + n − 1) is the rising factorial. It is important to
note that the second homogeneous solution behaves like (1 − ξ )−1−2iΩ/(γ+1) as ξ → 1.
The terms a0, b0 and σr are unknowns. These can be found by applying appropriate
boundary conditions. With this done, the solution to (2.24b) is found and the solutions
to (2.24a) and (2.24c) follow.

2.3.2. Linear analysis for a choked nozzle

Consider a nozzle with geometry shown in figure 1. Apart from the uniform
upstream and downstream regions of the duct, the nozzle is made up of three regions,
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each with a linear steady velocity profile. The geometry is chosen such that the
compactness of the contraction |Ωc| is the same as that of the expansion downstream
of the shock, and the compactness of the expansion upstream of the shock is chosen
such that (2.10) holds true across the shock. It is assumed that the movement of the
shock is small in comparison with the wavelengths of the disturbances at the shock,
so that the boundary between the supersonic and subsonic regions in the expansion
may be treated as stationary. Since linear theory predicts that the amplitude of the
shock displacement is proportional to the amplitude of the excitation, there exists a
sufficiently small excitation amplitude to satisfy this assumption. It is important to
note that this may be a more strict limitation on the linearity of the system than the
earlier assumption that second- and higher-order terms of the perturbation quantities
are negligible.

First consider the contraction. Three boundary conditions are required to solve
for the three unknowns a0, b0 and σr . The term ξ is unity at the throat, thus the
singularity in Ph2 can only be avoided by setting b0 = 0. The downstream travelling
pressure wave entering the system from the uniform upstream region is known. Let
p+ = P + exp(iωt), p− = P − exp(iωt) and the subscript ( )u refer to quantities taken at
the upstream entrance to the nozzle. Since σu is a known system excitation, if xr = xu

then σr = σu is also known. Since P +
u is another known system excitation, then (2.3a)

can be used to solve for the only remaining unknown a0.
Next consider the expansion upstream of the shock. Again, since this region is

bounded by the throat, it is necessary that b0 = 0. The entropy wave and downstream
travelling pressure wave are continuous across the throat. Since all the perturbations
within the contraction have been found, σ at the throat is also known. Letting xr = x∗,
then σr = σ∗ can be used as a boundary condition. P + is also known at the throat,
so (2.3a) can then be used to solve for the remaining unknown a0. Note that it is not
necessarily true that P − is continuous across the throat. These final two boundary
conditions are a result of solving the mass, momentum and energy conservation
equations across the throat, as discussed in the Appendix.

Finally, consider the expansion downstream of the shock. The upstream travelling
pressure wave entering the system from the uniform downstream region is known.
Let the subscript ( )d refer to quantities taken at the exit of the nozzle. Since
P −

d is known, then (2.3b) gives one boundary condition. With all the perturbations
upstream of the shock solved, (2.20a) relates U2 to P2, giving a second boundary
condition and (2.20b) relates σ2 to P2, giving the final boundary condition. Although
the boundary conditions for the other regions of the nozzle allow each unknown to
be found one at a time, the three boundary conditions for this final region of the
nozzle must be solved simultaneously.

It is a relatively simple matter to extend this approach to nozzles with arbitrary
geometries. The steady velocity distribution within the nozzle must first be
approximated by a piecewise linear distribution. Each ‘piece’ of the steady velocity
distribution can then be connected using a simple set of boundary conditions following
a similar approach to that just discussed. Provided that the interface Mach number
is not unity, the three boundary conditions used to connect each section are easily
obtained by using the fact that P , U and σ are all continuous across each interface.

2.3.3. Linear analysis for a supersonic diffuser

This section describes the changes to the theory discussed in § 2.3.2 required to
analyse a supersonic diffuser. Again, the geometry shown in figure 1 will be used.
The flow in the contraction is supersonic, which has the result that p−

u is travelling
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Response to P +
u Response to σu Response to P −

d

P −
u

2−[γ−1]M̄u

2+[γ−1]M̄u

−2M̄u

2+[γ−1]M̄u
0

σd

(γ−1)(1−M̄d)(2−[γ−1]M̄d)
(1+[γ−1]M̄d)(2+[γ−1]M̄u)

[γ−1]M̄2
d+γ[γ−1]M̄uM̄d+[γ−1]M̄d+2

(1+[γ−1]M̄d)(2+[γ−1]M̄u)
−(γ−1)(1−M̄d)

1+[γ−1]M̄d

P +
d

2M̄d(3γ−1+M̄2
d [γ−1]2)

(1+M̄d)(1+[γ−1]M̄d)(2+[γ−1]M̄u)
2M̄d(1−γM̄u+[γ−1]M̄2

d)
(1+M̄d)(1+[γ−1]M̄d)(2+[γ−1]M̄u)

(1−M̄d)(1−[γ−1]M̄d)
(1+M̄d)(1+[γ−1]M̄d)

Table 1. Reflection and transmission coefficients for a compact choked nozzle.

downstream. Therefore all three characteristics at the diffuser inlet are known system
excitations. The resulting boundary conditions for the contraction are given by
(2.3a,b), and σr = σu with xr = xu. These boundary conditions give the three unknowns
for the contraction region (a0, b0 and σr ). It is no longer possible to choose b0 = 0,
so Ph2 is singular at ξ = 1. Letting ( )T designate quantities at the throat, the linear
theory predicts that as M̄T → 1, P → ∞. Therefore, for sufficiently small values
of M̄T − 1, the assumption of linearity will not hold. It follows that linear theory
is insufficient to describe the frequency-dependent forced response of a supersonic
diffuser for M̄T − 1 below some, yet to be determined, threshold value.

For sufficiently large values of M̄T − 1, it is a straightforward matter to model the
remainder of the diffuser. P , U and σ at the throat are known from the analysis of
the contraction, and since M̄T �= 1, then they are continuous across the throat. This
fact can be used to solve for a0, b0 and σr in the expansion upstream of the shock.
The expansion downstream of the shock can be treated in exactly the same manner
as for a choked outlet.

2.4. Compact transmission and reflection coefficients for a choked nozzle

It is often reasonable to assume that a nozzle is compact in comparison to the
wavelengths of the acoustic and entropy waves in the system. The analytical results
given in § 2.3.2 can be further simplified with the substitution Ω = 0 to gain the
compact reflection and transmission coefficients as given in table 1. The reflection
coefficients agree with those of Marble & Candel (1977) and Stow, Dowling &
Hynes (2002); however, the transmission coefficients appear to be a new contribution.
Alternatively, these results may be derived directly from conservation across a compact
nozzle. Therefore

Mu = M̄u,
ρuuu

ρ̄uūu

=
ρdud

ρ̄d ūd

, Tt,u = Tt,d , (2.26a–c)

where the subscript ( )t refers to stagnation quantities. The equations

p′

γp̄
= 1

2
(p+ + p−),

u′

c̄
= 1

2
(p+ − p−),

ρ ′

ρ̄
=

p′

γp̄
− s ′

cp

(2.27a–c)

can then be substituted into (2.26a)–(2.26c), giving three equations in the three
unknown outgoing waves (p−

u , p+
d and sd

′/cp). These equations can be linearized in
the wave amplitudes and solved to gain the same compact reflection and transmission
coefficients as given in table 1. Alternatively, the equations may be left in the nonlinear
form and solved numerically in order to obtain the nonlinear behaviour of a compact
choked nozzle.
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Response to P +
u Response to σu Response to P −

u

σd

(γ−1)(1+M̄u)(M̄uMd−M̄dMu)
2M̄uMu(1+[γ−1]M̄d)

Md+[γ−1]M̄dMu

Mu(1+[γ−1]M̄d)
(γ−1)(1−M̄u)(M̄uMd+M̄dMu)

2M̄uMu(1+[γ−1]M̄d)

P +
d

M̄d(1+M̄u)(Mu+[γ−1]M̄uMd)
M̄uMu(1+M̄d)(1+[γ−1]M̄d)

2(γ−1)M̄d(M̄2
d−M̄2

u)
Mu(1+M̄d)(1+[γ−1]M̄d)

M̄d(M̄u−1)(Mu−[γ−1]M̄uMd)
M̄uMu(1+M̄d)(1+[γ−1]M̄d)

Table 2. Reflection and transmission coefficients for a compact supersonic diffuser, where
M = 2 + (γ − 1) M̄2. The response to P −

d is not shown as it is the same as for a compact
choked nozzle.

2.5. Compact transmission and reflection coefficients for a supersonic diffuser

Despite the difficulties faced in § 2.3.3, it is possible to formulate reflection and
transmission coefficients for a compact supersonic diffuser regardless of the value of
M̄T . The equations governing a compact supersonic diffuser are very similar to those
for a compact choked nozzle. Equations (2.26b) and (2.26c) are still true, although
now (2.26a) is no longer true. Substituting the characteristic definitions into (2.26b)
and (2.26c) will yield two equations in the two unknown outgoing waves (p+

d and
sd

′/cp). Linearizing these equations in the wave amplitudes will give the reflection and
transmission coefficients as shown in table 2. These coefficients do not appear to have
been previously presented. Again, the linearization may be skipped and numerical
solution of the equations will predict the nonlinear system behaviour.

2.6. Unchoke criterion for a choked nozzle

As discussed in § 2.2, disturbances interact with a normal shock wave and cause it to
move. If these disturbances are large enough to cause the shock to travel to a position
upstream of the nozzle throat, then the nozzle will no longer be choked, and a large
deviation from the behaviour predicted by the present theory is expected. As such, it
is useful to be able to give conditions for ‘unchoke’.

Unchoke cannot be predicted using the linear theory presented in § 2.3.2. If the
amplitude of xs

′ is greater than the distance between the steady shock location and
the throat, then unchoke is experienced. However, the discussion in § 2.3.2 assumes
that xs

′ is small in comparison to the wavelength of the disturbances at the shock.
The speed at which p− travels is c̄(1 − M̄), so p− is stationary at the throat, and the
wavelength of p− is zero, contradicting the initial assumption. Therefore an alternative
analysis must be applied. Development of a frequency-dependent unchoke criterion is
a difficult task since, for high-frequency excitation, multiple shocks may exist within
the nozzle, as discussed later. The theory discussed in this paper will therefore only
be concerned with an unchoke criterion for compact nozzles.

Consider the instant at which the shock momentarily reaches the nozzle.
Equations (2.26a)–(2.26c) still hold at this instant. The shock becomes infinitely
weak as it reaches the throat, so the flow between the nozzle inlet and nozzle outlet
is isentropic. This can be represented by an isentropic relation between the inlet
and outlet, such as pt,u = pt,d . This gives a total of four equations. However, at this
stage of the analysis, the amplitudes of all six waves at the nozzle boundaries are
unknown. The final two equations must be gained from assuming something about the
excitation. For example, it might be assumed that two of the three excitation waves
are known. A simple numerical solver could then be used to find the amplitude of
the remaining excitation wave required to cause unchoke (alternatively the equations
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may be linearized and solved algebraically; however, since unchoke often requires
large excitation amplitudes, the application of a linear analysis will be limited).
Using an approach like this, the critical value of p−

d could be found for a range of
combinations of p+

u and su
′/cp in order to completely map the boundary between

choke and unchoke regimes in (p+
u , su

′/cp , p−
d ) space.

2.7. ‘Over-choke’ criterion for a choked nozzle

System excitation may alternatively cause the shock to travel through the outlet of
the nozzle, which will be called ‘over-choke’. The magnitude of excitation required to
cause over-choke can be found using a similar technique to that given in § 2.6. Again,
it is assumed that the nozzle is compact. Consider the moment just before over-choke,
when the shock is just about to cross the junction between the expansion and the
uniform downstream section. As with the calculations in § 2.6, (2.26a)–(2.26c) are still
true and one further equation is required. This final equation is simply Md = M2. In
order to express M2 in terms of the wave amplitudes at the nozzle inlet and outlet, it
is first necessary to employ the area–Mach number relation in order to obtain

g(M̄u)

g(Mu)
=

g(M̄1)g(M̄d)

g(M1)g(M̄2)
, (2.28)

where

g(M) = M2/
[
1 + 1

2
(γ − 1)M2

](γ+1)/(γ−1)
.

This allows M1 to be expressed in terms of the wave amplitudes at the inlet and
outlet. The shock relation,

M2
2 =

1 + 1
2
(γ − 1) M2

1

γM2
1 − 1

2
(γ − 1)

, (2.29)

can then be used to express M2 in terms of M1.

2.8. Unstart criteria for a compact supersonic diffuser

The interaction of disturbances with a supersonic diffuser may result in the expulsion
of a shock wave from the diffuser inlet. This process is referred to as ‘unstart’. The
unstart criteria for a compact supersonic diffuser can be developed following similar
arguments to those given in § 2.6. In contrast to the choked nozzle, p−

u is a system
excitation rather than an unknown, so the number of equations required is reduced
from four to three. Equations (2.26b) and (2.26c) still apply, so one equation remains
to be found.

Two different mechanisms of unstart exist in a supersonic diffuser. In the first
type of unstart, excitation causes the primary shock to travel upstream of the throat.
When the shock reaches the throat MT = M1, giving the final required equation. In
order to express MT and M1 in terms of the unknowns at the system boundaries, the
area–Mach number relation can be used to show that

g(MT )

g(M̄T )
=

g(Mu)

g(M̄u)
, (2.30a)

g(M1)g(M̄2)

g(M̄1)g(M2)
=

g(Mu)g(M̄d)

g(M̄u)g(Md)
. (2.30b)

The second type of unstart occurs when the unsteady Mach number at the throat
drops below unity. This results in the formation of a shock at the throat which, in the
low frequency limit, is unstable and is expelled out of the nozzle inlet. The criterion
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for this second type of unstart is MT = 1, as shown by Mayer & Paynter (1995).
Equation (2.30a) can again be used to express MT in terms of p+

u , p−
u and σu to

give a general condition for this second type of unstart. This also gives a physical
explanation for the failure of the linear theory to describe a supersonic diffuser in the
limit M̄T → 1 as discussed in § 2.3.3. In such a case, an unstable shock will develop
at the throat of the diffuser for infinitesimal forcing amplitudes. As M̄T is increased
from unity, it follows that the amplitude of forcing required to cause the second type
of unstart will also increase.

2.9. ‘Over-choke’ criterion for a compact supersonic diffuser

The ‘over-choke’ criterion for a compact supersonic diffuser can be developed
following the arguments in § 2.7, except (2.26a) is no longer true and p−

u is a system
excitation rather than an unknown. Since the number of equations and unknowns
have been reduced from four to three, a numerical solution for the ‘over-choke’
criterion can still be found.

3. Numerical solver
In this section, (2.1a)–(2.1c) are solved numerically in conservation form to validate

the present theory and to study the effect of nonlinearity on the forced response
of choked nozzles and supersonic diffusers. A dispersion-relation-preserving (DRP)
scheme of Tam & Webb (1993) is adopted to perform the time marching and spatial
differencing. The specific DRP scheme chosen uses an optimized fourth-order spatial
and temporal discretization. The choice of such a scheme ensures that the computed
waves are a good approximation of the exact solutions of the Euler equations.

Non-reflecting boundary conditions are implemented to ensure that the numerical
domain approximates an infinite domain. The boundary conditions follow the
formulation of Poinsot & Lele (1992) to ensure that the incoming waves at each
boundary are equal to the desired values of the system excitation. This means that
one of the incoming waves is sinusoidal with a fixed amplitude, and the rest are set to
zero. The non-reflecting boundaries are placed very close to the nozzle inlet and outlet
in order to reduce the effects of nonlinear wave propagation between the boundary
of the numerical domain and the nozzle.

Limitations of the spatial differencing scheme, which uses a seven-point stencil,
would produce very large non-physical numerical waves at a shock. These numerical
waves can pollute the solution with unacceptable noise, so it is necessary to adopt a
damping scheme. The adaptive nonlinear artificial dissipation model of Kim & Lee
(2001) is used as they show it to perform very well for acoustic calculations within
choked nozzles. After some testing, it was found that the simulations produce results
with less noise if the adaptive control constant of Kim & Lee (2001) is set to a
static value of 5 for the choked nozzle simulations and 10 for the supersonic diffuser
simulations.

All simulations are run with a Courant–Friedrichs–Lewy number of 0.2. The
number of gridpoints used in each simulation is 501. Simulations are run without
excitation to a converged steady-state solution before harmonic excitation is started.
Convergence to the steady state is assumed to be reached when the relative change
in density between time steps is of a similar magnitude to the floating-point error.
When convergence is reached, harmonic excitation is started, and the simulation is
run for a sufficiently long time to ensure that the response is periodic.

A number of tests were performed to validate the numerical solver. These included
linear acoustic and entropy propagation, the shock tube problem for shock dynamics
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Figure 2. Pressure reflection behaviour of a compact nozzle, showing (a) p−
u versus p+

u and
(b) p−

d versus p+
d . Dashed lines show predicted linear response and solid lines show predicted

nonlinear response. M̄u = M̄d = 0.2.
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Figure 3. As for figure 2 except with M̄u = M̄d = 0.8.

and nonlinear wave propagation, and tests to ensure that the non-reflecting boundaries
were behaving correctly. The good agreement between the present theory and the
numerical results shown in § 4 is, in itself, validation of the numerical code.

4. Discussion
In this section, numerical simulations are performed on the geometries given in

figure 1 for different forms of excitation waves and, where possible, the results are
compared to the theory discussed in § 2.

4.1. Compact behaviour

Figure 2 shows the predicted nonlinear pressure reflection behaviour of a compact
choked nozzle with M̄u = M̄d = 0.2. The linear results are, of course, straight lines
with slopes equal to the pressure reflection coefficient P −/P +. As shown in figure 2(a),
when the nozzle is behaving as an outlet (i.e. excitation coming from upstream) there
is a very small difference between the linear and nonlinear results for amplitudes of
excitation as high as P +

u = 0.2. Figure 2(b) suggests that there is a larger degree of
nonlinearity in the pressure reflection behaviour when the nozzle is acting as an inlet
(i.e. excitation coming from downstream).

Figure 3 suggests that the pressure reflection behaviour of the nozzle is more
nonlinear when M̄u = M̄d is increased. Define the ratio |(Rnl − Rl)/Rnl |, where Rnl

is the instantaneous magnitude of the reflected acoustic wave given by the nonlinear
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Figure 4. |(Rnl − Rl)/Rnl | versus instantaneous forcing magnitude for compact choked
nozzle acting as (a) an inlet and (b) an outlet. Contours show value of M̄u = M̄d .

1.0 1.5 2.0
–1.5

–1.0

–0.5

0

0.5

1.0

C
ri

ti
ca

l f
or

ci
ng

 a
m

pl
it

ud
e

M̄1

Over-choke

Over-choke

Over-choke

Unchoke

Unchoke

Unchoke

Choke

Choke
Choke

(a) (b) (c)

1.0 1.5 2.0
–1.5

–1.0

–0.5

0

0.5

1.0

M̄1

1.0 1.5 2.0
–1.5

–1.0

–0.5

0

0.5

1.0

M̄1

Figure 5. Critical forcing amplitudes required to cause unchoke and over-choke in a compact
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u , and (c) p−

d . M̄u = M̄d = 0.5.

theory and Rl is the instantaneous magnitude of the reflected acoustic wave given by
the linear theory. Figure 4 more clearly illustrates the effect of Mach number on the
nonlinearity of the acoustic reflection behaviour. Some insight into this trend can be
gained by considering the limit as M̄u, M̄d → 0. At this limit, the area of the throat
approaches zero, so the nozzle is closed. In one-dimensional acoustics, a closed end
has perfectly linear reflection (p+ = p−), suggesting increasing nonlinearity at higher
Mach numbers.

Figure 5 shows the amplitude of forcing required to cause unchoke and over-
choke in a compact choked nozzle for forcing in su

′/cp , p+
u and p−

d . Placing the
shock towards the upstream end of the nozzle (decreasing M̄1) increases the forcing
amplitude required to cause over-choke but decreases the forcing amplitude required
to cause unchoke, which is unsurprising. The trends in critical forcing amplitudes for
supersonic diffusers are very similar, although a second mechanism of unchoke may
occur (see § 2.8), significantly reducing the critical forcing amplitudes for throat Mach
numbers close to unity.

Figure 6 shows a time trace of the reflected pressure wave from a compact choked
nozzle acting as an inlet. For this configuration, the amplitude of forcing in p−

d

required to cause unchoke is 0.0915. The figure shows that when the amplitude of
forcing is below 0.0915, the nonlinear analysis agrees well with the Euler simulation at
low frequency. The small phase difference between the simulation and the nonlinear
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Figure 6. Time trace of reflected pressure from a compact choked nozzle with harmonic
forcing of p−

d with (a) P −
d = 0.09 and (b) P −

d = 0.1. |Ωc| = 0.01, M̄u = M̄d = 0.6 and M̄1 = 1.4.
Nonlinear prediction (solid line); linear prediction (dashed line); simulation (◦).
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Figure 7. Simulated shock location in a compact choked nozzle with harmonic forcing in p−
d

with (a) P −
d = 0.09 and (b) P −

d = 0.1. |Ωc| = 0.01, M̄u = M̄d = 0.6 and M̄1 = 1.4. Shock location
(solid line); unsteady sonic point (dashed line). l is the length of the contraction. Throat
located at x/l = 0.

analytical result is due to the fact that the simulation results are for |Ωc| = 0.01
(running the simulation at Ωc = 0 would require an infinite amount of time). Unchoke
occurs when the amplitude of forcing is increased above 0.0915, and there is worse
agreement with the nonlinear analytical result only while the nozzle is unchoked. This
is supported by figure 7, which shows the time-dependent location of the shock and
the sonic point. It is also interesting to note that the non-sinusoidal motion of the
shock wave shown in figure 7(a) nonetheless results in a comparatively sinusoidal
reflected wave.

4.2. Frequency-dependent behaviour of choked nozzles

Culick & Rogers’ (1983) study of the shock dynamics in a supersonic diffuser neglected
the effect of the contraction and expansion on the acoustics, but conceded that it
may be important. Figure 8 investigates this effect, showing the linear theory for
the reflection coefficient P +

d /P −
d for a nozzle. Also shown is the predicted reflection

coefficient of the shock, neglecting the effect of the change in geometry on the
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(dash-dotted line); M̄d = 0.5 (dotted line).

acoustics. The difference between the two results is dependent on the difference
between M̄d and M̄2. If they are similar, then the area change between the shock and
the nozzle exit is small, so the effect of the area change is also small. This is evident
in the M̄d =0.8 curve since M̄2 ≈ 0.81. Conversely, when M̄d is quite different to M̄2,
the effect of the area change is large, as is shown by the M̄d = 0.5 curve.

All numerical simulations involve sinusoidal excitation in one of the incoming
characteristic waves. If the system exhibits perfectly linear behaviour, then the
outgoing waves will have the same spectral content as the excitation. Since the
Euler equations are nonlinear, it is necessary to develop an appropriate method for
determining the phase and magnitude of some general nonlinear response. Let the
series f denote the outgoing characteristic being analysed over a full forcing period.
The discrete Fourier transform and the inverse discrete Fourier transform can then
be used to isolate fω, defined as the component of f occurring at the excitation
frequency. The phase and magnitude of fω can then be used as measures of the phase
and magnitude of f . The difference between f and fω can also be used as a measure
of nonlinearity, defined as

µ =
|f − fω|2

|f |2
, (4.1)

where | |2 denotes the �2-norm. When µ = 0, the response is sinusoidal at the input
frequency, i.e. an exactly linear response. Conversely, when µ = 1, the response has
no spectral content at the forcing frequency, i.e. it is strongly nonlinear. As such,
determination of the phase and magnitude of fω is only meaningful for systems with
values of µ close to zero.
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Figure 9. Frequency-dependent pressure reflection coefficient for choked nozzle with
M̄u = M̄d = 0.5 and M̄1 = 1.25, (a) outlet and (b) inlet. Linear theory (solid line), and simulation
results for forcing amplitudes of 10−5 (◦), 10−2 (+) and 10−1 (×).

Figure 9 shows the frequency dependence of the reflection coefficient when the
nozzle is acting as an inlet and as an outlet. As the frequency of forcing increases, the
magnitudes of the reflection coefficients decrease for both configurations. Although
Marble & Candel (1977) do not consider the effect of the shock, no information
from the shock is able to be transmitted upstream through the supersonic region
downstream of the throat. It therefore follows that their results for the choked outlet
reflection coefficient agree with those presented here since they are unaffected by the
shock. The magnitude of the inlet pressure reflection coefficient exhibits a number of
local maxima. The period associated with the frequency gap between each of these
maxima is roughly equal to the transport lag of an acoustic wave travelling from the
uniform downstream section to the shock and back again.

The agreement between the analytical and simulated reflection coefficients in figure 9
is very good up to forcing amplitudes of 10−2. At a forcing amplitude of 10−5, the
nonlinearity measure for both the inlet and outlet is less than 0.01 across all frequencies
tested. This validates the linear theory and the numerical scheme. At this forcing
amplitude, the magnitude of the shock displacement is smaller than the grid spacing.
For larger excitation amplitudes, the shock may pass through gridpoints, causing
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Figure 10. Frequency-dependent transmission coefficient for choked nozzle with M̄d =
M̄u = 0.5 and M̄1 = 1.25. (a) P +

d /P +
u (b) and σd/P

+
u . Theory (solid line), and simulation

results for forcing amplitudes of 10−5 (◦), 10−2 (+) and 10−1 (×).

numerical noise to enter the solution downstream of the shock. When observing
waves of comparable amplitudes to the excitation wave, this noise has a negligible
effect; however, it can have a more significant effect on waves of smaller amplitudes.
This manifests as an over-prediction of µ for some of the numerical results presented.
In particular, when the forcing amplitude is 10−2 and 10−1 and |Ωc| > 1, there is an
over-prediction of µ(P +

d /P −
d ).

For all frequencies and forcing amplitudes tested, the outlet is more linear than
the inlet, which is in agreement with the predictions for compact nozzles discussed
in § 2.4. The behaviour of the outlet is considerably more nonlinear when |Ωc| < 1
and the forcing amplitude is 10−1 than it is at the other operating conditions tested.
This is due to periodic unchoking of the nozzle under these conditions.

Figure 10 shows the frequency dependence of the transmission coefficients P +
d /P +

u

and σd/P
+
u for a choked nozzle. Again, the phase and amplitude of the numerical

results agrees well with the linear theory up to a forcing amplitude of 10−2. At a
forcing amplitude of 10−5, the nonlinearity is less than 0.01. The phase of P +

d /P +
u is

approximately equal to the transport lag of a pressure wave travelling from the nozzle
inlet to the nozzle outlet. P +

d /P +
u only shows substantial nonlinearity at a forcing
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u . P +

u = 10−1, |Ωc| = 10,
M̄u = M̄d = 0.5 and M̄1 = 1.25. Simulated result (solid line); linear prediction (dashed line).
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Figure 12. Simulated shock location in a choked nozzle with harmonic forcing in p−
d . (a) P −

d =
0.167 and |Ωc| = 1 and (b) P −

d = 0.307 and |Ωc| = 5. M̄u = M̄d =0.5 and M̄1 = 1.4. Shock
location (solid line); unsteady sonic point (dashed line). l is the length of the contraction.
Throat located at x/l = 0.

amplitude of 10−1, where for |Ωc| < 1, the nozzle unchokes, and for higher frequencies,
wave steepening has an increasing effect. A typical transmitted wave showing effects
of wave steepening is shown in figure 11. For forcing of sufficiently large amplitude
and/or frequency, wave steepening may even result in the development of sawtooth
waves containing shocks.

The shock motion can also be significantly different at higher frequencies than it is
in the ω → 0 limit. As shown in figure 12(a), during the motion of the shock upstream,
the flow further downstream of the shock accelerates until it becomes supersonic and
a new shock is eventually formed. The acceleration of the flow behind the original
shock causes it to reduce in strength until it starts travelling upstream. The weak
original shock eventually coalesces with the stronger new shock, having little effect
on its motion. After a full period of excitation, the new shock ends up at the same
location as the original shock. Increasing the excitation frequency further allows for
the existence of even more shocks within the nozzle (figure 12b shows three shocks
when |Ωc| = 5). This agrees with the results of Rein, Grabitz & Meier (1988), who
studied shock motion using a different numerical method.
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Figure 13. P −
d required to cause unchoke in a choked nozzle with M̄u = M̄d = 0.5. Solid lines

show simulation results. Contour labels give value of |Ωc|. Dashed line shows theoretical result
for compact choked nozzle. Circles show simulated results for |Ωc| = 0.01.

The frequency dependence of the forcing amplitude required to cause unchoke is
shown in figure 13 for the case of harmonic excitation in p−

d . The agreement between
the theory for a compact choked nozzle and the simulations for |Ωc| = 0.01 is very
good. As the forcing frequency increases, a greater forcing amplitude is required to
cause unchoke. As discussed in § 2.6, developing a general formula for this frequency
dependence would be a very difficult task.

4.3. Frequency-dependent behaviour of supersonic diffusers

The pressure transmission behaviour of a supersonic diffuser with M̄T = 1.01 is shown
in figure 14. The linear theory and numerical results for forcing amplitudes of 10−5

agree well. This shows that the linear theory is still valid for the range of throat Mach
numbers typical in most practical engineering applications despite its limitations as
M̄T → 1 (see § 2.3.3). Although not shown, further reduction of the throat Mach
number results in a more appreciable deviation from the linear theory until M̄T =1,
when the linear theory becomes singular.

When the forcing amplitude is increased at low frequencies, the supersonic diffuser
experiences the second type of unstart as described in § 2.8. Because the motion of the
shock past the inlet causes an abrupt change in the inlet conditions, it is non-physical
to make observations on the transmission coefficient. The results affected by this
second type of unstart are therefore omitted from figure 14. When this second form
of unstart does not occur, the simulation results for a forcing amplitude of 10−2 have
a nonlinearity measure of less than 0.01, suggesting a strongly linear behaviour. At a
forcing amplitude of 10−1 a small amount of nonlinearity due to wave steepening is
observable.

The second type of unstart is illustrated in figure 15(a), which shows formation
of a shock just upstream of the throat. Since the example shown is for a finite-
length supersonic diffuser, the new shock takes some time to travel all the way
upstream to the nozzle inlet. In the case of a compact supersonic diffuser, the
shock instantly reaches the nozzle inlet. Increasing the frequency further (as shown
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Figure 14. Frequency-dependent pressure transmission coefficient for a supersonic diffuser
with M̄u = 1.5, M̄d = 0.5, M̄1 = 1.25, and M̄T = 1.01. Theory (solid line), and simulation results
for forcing amplitudes of 10−5 (◦), 10−2 (+) and 10−1 (×).
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Figure 15. Simulated shock location in a supersonic diffuser with harmonic forcing of P +
u =

0.0167, (a) |Ωc| = 0.5 and (b) |Ωc| = 1.75. M̄u = 1.5, M̄d = 0.5 and M̄1 = 1.25. Shock location
(solid line); unsteady sonic point (dashed line). l is the length of the contraction. Throat
located at x/l = 0.
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Figure 16. P +
u required to cause unstart in a supersonic diffuser with M̄u =1.5, M̄T = 1.1 and

M̄d = 0.5. Solid lines show simulation results. Contour labels give value of |Ωc|. Dashed line
shows theoretical result for compact supersonic diffuser. Circles show simulated results for
|Ωc| = 0.01.

in figure 15b), the shock may never reach the nozzle inlet, instead travelling back
towards the throat where it disappears shortly after the formation of a new stable
shock.

Figure 16 shows the frequency dependence of the forcing amplitude required to
cause unstart for the case of harmonic excitation in p+

u . The compact theory predicts
that for M̄1 = M̄T , the primary shock will travel past the throat (resulting in unstart)
for infinitesimally small harmonic forcing. As M̄1 is increased from M̄T , the amplitude
required to cause the primary shock to travel past the throat steadily increases. At
a sufficiently large value of M̄1, it is not possible to cause the primary shock to
travel past the throat. Instead the excitation results in the reduction of the throat
Mach number to unity, at which point the second mechanism of unstart occurs
instead. The amplitude of forcing required to cause the second mechanism of unstart
is independent of M̄1, so a levelling of the critical forcing amplitude is observed
at higher M̄1. Figure 16 shows that the nonlinear compact theory agrees well with
simulations performed at |Ωc| =0.01. As also observed with unchoke of choked
nozzles, the amplitude of forcing required to cause unstart increases with frequency.

5. Conclusions
A linear analytic model for studying the frequency response of arbitrarily shaped

nozzles was developed. This was validated for the case of simple choked nozzle
and supersonic diffuser geometries using numerical simulations of the quasi-one-
dimensional Euler equations. This model adds to existing works since it includes the
effects of geometry, forcing frequency and the existence of a normal shock within the
expansion. All of these have been shown to have a strong effect on the nozzle and
diffuser response in certain circumstances.

All of the compact transmission and reflection coefficients for choked nozzles and
supersonic diffusers have also been identified and evaluated. It appears that this is the
first time that several of the compact transmission coefficients have been presented.
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The response of choked nozzles and supersonic diffusers to larger amplitude
excitation was then investigated numerically and analytically. A range of different
nonlinear effects were identified. It was shown that the equations governing the
response of a compact choked outlet were more linear than those governing the
behaviour of a compact choked inlet. It was also shown that higher Mach numbers
upstream and downstream of choked nozzles contribute to a more nonlinear response.
Wave steepening had a noticeable effect only for forcing with sufficiently large
amplitude and/or frequency. Typically, the most significant nonlinear effects were
unchoke, unstart and ‘over-choke’. If these were avoided by appropriate placement
of the shock, the forced response of the nozzle/diffuser was strongly linear for
forcing amplitudes up to P +

u =0.01. Nonetheless, nonlinearity in nozzle and diffuser
response appears to be significant at forcing amplitudes typically experienced in some
engineering devices.

Since unchoke, unstart and ‘over-choke’ were found to have a strong nonlinear effect,
an analytical model for their prediction was developed and validated against numerical
simulations. Unsurprisingly, it was found that unchoke and the first mechanism of
unstart occurred more readily if the shock was located close to the throat, and ‘over-
choke’ occurred more readily if the shock was located close to the nozzle exit. The
second mechanism of unstart was shown to occur more readily if the throat Mach
number was close to unity. Of more significance, the numerical results also showed
that by increasing the forcing frequency, a progressively larger forcing amplitude was
required to cause unchoke, unstart or ‘over-choke’ because shock motion decreases
with increasing forcing frequency.

Appendix. Solution of conservation equations across the throat
Consider solving (2.1a)–(2.1c) across an infinitesimally wide section through the

throat. Since the section at the throat is of infinitesimal width, then it has no storage
capacity and any time derivatives in the conservation equations can be dropped.
Linearizing in the perturbation quantities gives

p+
u∗ − su∗

′

cp

= p+
d∗ − sd∗

′

cp

, (A 1a)

2p+
u∗ − su∗

′

cp

= 2p+
u∗ − sd∗

′

cp

, (A 1b)

3γ − 1

2γ − 2
p+

u∗ − su∗
′

cp

=
3γ − 1

2γ − 2
p+

d∗ − sd∗
′

cp

, (A 1c)

where ( )u∗ denotes quantities taken at the upstream side of the throat and ( )d∗
denotes quantities taken at the downstream side of the throat. One of these equations
is redundant, and all three can be satisfied iff p+

u∗ = p+
d∗ and su∗

′ = sd∗
′. It is not

necessary for p−
u∗ = p−

d∗.
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